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Abstract
Selective retrieval of overlappingmemories can generate competition. How does the brain adaptively resolve this competition?
One possibility is that competing memories are inhibited; in support of this view, numerous studies have found that selective
retrieval leads to forgetting of memories that are related to the just-retrieved memory. However, this retrieval-induced
forgetting (RIF) effect can be eliminated or even reversed if participants are given opportunities to restudy thematerials between
retrieval attempts. Here, we outline an explanation for such a reversal, rooted in a neural network model of RIF that predicts
representational differentiation when restudy is interleaved with selective retrieval. To test this hypothesis, we measured
changes in pattern similarity of the BOLD fMRI signal elicited by related memories after undergoing interleaved competitive
retrieval and restudy. Reduced pattern similarity within the hippocampus positively correlated with retrieval-induced
facilitation of competingmemories. This result is consistent with an adaptive differentiation process that allows individuals to
learn to distinguish between once-confusable memories.
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Introduction

Selective retrieval of a target memory reliably improves the later
accessibility of that memory (Roediger and Butler 2011), but
memory for related items is sometimes impaired. This latter phe-
nomenon, termed retrieval-induced forgetting (RIF), has been ob-
served under a wide range of conditions (Anderson et al. 1994;
Anderson 2003). RIF is beneficial so long as the weakened com-
petitor remains irrelevant. However, items that are irrelevant in
one situation can become relevant later. When this happens,
RIF can be harmful to future retrieval success. A central question
for theories of learning is how the brain mitigates these poten-
tially harmful effects of RIF (MacLeod and Hulbert 2011).

In this paper, we describe a potential solution to this problem:
In situations where participants are allowed to restudy the

previously irrelevant item, the brainmay differentiate the neural
representation of thismemory from other, competingmemories,
thereby reducing competition on subsequent retrieval attempts
and improving recall of the full set of (previously competitive)
memories.Wemotivate this hypothesis using our previous neur-
al network modeling work, and we provide novel empirical sup-
port for this hypothesis using fMRI.

The typical retrieval-practice paradigm employed to investi-
gate RIF begins with a study phase, in which participants learn
category–exemplar pairings. In the retrieval-practice phase that
follows, half of the exemplars from half of the categories are
cued for retrieval. After multiple rounds of retrieval practice, a
final cued-recall test is administered for all of the originally stud-
ied items. Although recall of items that underwent retrieval prac-
tice (Rp+) is typically facilitated compared with recall of items
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from unpracticed baseline categories (Nrp), recall of the unprac-
ticed competitors from practiced categories (Rp−) is characteris-
tically impaired relative to Nrp (Anderson 2003). This latter
finding indicates RIF.

Certain variations of the above-mentioned procedure have
been found to reverse RIF. Notably, interleaving opportunities
to restudy Rp−, Nrp, and Rp+ items between retrieval practice at-
tempts leads to better recall of Rp− items, relative to Nrp items
(Storm et al. 2008). This result is puzzling at first: Rp− and Nrp
items were studied the same number of times, in the same
way; they only differed in that participants practiced generating
exemplars related to the Rp− items. In the standard retrieval-
practice paradigm, this leads to impaired recall of Rp− items—
why did the addition of restudy trials in the Storm et al. (2008)
study lead to better recall of Rp− items than Nrp items?

We hypothesize that this improvement in recall—“reverse
RIF” or revRIF—occurs because interleaved retrieval practice and
restudy lead to differentiation of the neural representations of
items from practiced categories. This hypothesis stems from
our prior neural network modeling work exploring competi-
tion-dependent learning and RIF (Norman et al. 2006, 2007).

Note that neither of these prior modeling papers directly
addressed how differentiation could occur during a retrieval-
practice paradigm: Norman et al.’s (2006) paper looked at compe-
tition-dependent learning and differentiation in general terms,
but did not simulate a retrieval-practice paradigm; and Norman
et al.’s (2007) model looked at cortico-hippocampal interactions
during retrieval practice but used a simplified architecture that
did not allow for differentiation. The predictions described here
were derived by extrapolating outward from the basic principles
outlined in the 2 papers.

Our predictions are outlined in Figure 1. When memories
compete on retrieval-practice trials, the “winning” item (i.e.,
the item with the strongest activation; typically the Rp+ item)
has its connections strengthened. Crucially, if related Rp− items
begin to interfere during retrieval practice, connections between
the (weakly active) features of these competing memories
and other active features are weakened. As shown in Figure 1c,
this weakening process results in the “shearing away” of the Rp
− memory from features shared with the Rp+ memory, as well
as a more general weakening of interconnectivity between the
features of the Rp− representation. Because of this decreased

Figure 1. Predictions of our neural networkmodel. (a) Here,we depict 2 partially overlappingmemory representations—Abner theApe (large pink circle) andAnton theApe

(large orange circle)—after their initial study. Inhibitory interneurons (not shown) enforce an approximate “set point” on the amount of neural activity in the network

(O’Reilly and Munakata 2000). For the purpose of this diagram, we assume that the 5 units receiving the most excitatory input within the upper part of the network

(i.e., within the large gray rectangle) are allowed to be strongly active; additional units are allowed to be weakly active. We also assume that there exist sensory units

(in the blue zone) associated with each animal that represent the animal's sensory features. These sensory units are activated whenever the relevant animal is

presented; activation spreads from the sensory units to the rest of the animal's representation. (b) During selective retrieval practice of Anton (the Rp+ item), the units

associated with Anton’s representation are strongly activated in memory. Because of the overlap, Abner’s (the Rp− item’s) representation is also partially activated. (c) In

themodel, strong activation of Anton’s representation triggers further strengthening of connections between these units. Also, weak activation of Abner’s representation

triggers weakening of connections into Abner’s units (from other active units). This competition-dependent weakening of connections (highlighted in red) leaves the

Abner representation in a degraded (less-fully-interconnected) state. The decrease in interconnectivity is assumed to make the Abner memory harder to recall if

memory were tested at this point in time (i.e., RIF). (d) When Abner is restudied, the 2 units that formerly were shared between Abner and Anton are no longer in the

“top 5 most excited units” because of the weakening that took place earlier. As such, they drop out of the representation of Abner. Other units that were not

previously activated then take their place via spreading activation, leaving Abner with a full complement of 5 activated units. (e) Learning in the model strengthens

the connections (highlighted in green) between these new units and the other Abner units. In the final state of the network, the Abner representation is nearly as

strong (i.e., its features are roughly as densely interconnected) as it was at the outset, and now it overlaps less with the representation of Anton. This neural

differentiation will result in less competition at retrieval, which should boost recall of Anton above baseline (i.e., revRIF).
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interconnectivity, the Rp−pattern is a less “attractive” state of the
network (i.e., it is more difficult to coherently reactivate the pat-
tern), so the model predicts decreased recall of the Rp− pattern
(i.e., RIF) if memory were tested at this point in the experiment.

If the Rp− item is subsequently restudied (Fig. 1d), the unique
features of the Rp− itemwill be activated, but activationmay not
spread to the features that were formerly shared by the Rp− and
Rp+ item (because of theweakening of connections that occurred
during retrieval practice). Crucially, Norman et al.’s (2006) model
includes inhibitory interneurons (not shown in Fig. 1) that en-
force an approximate “set point” on the amount of excitatory
neural activity in the network (O’Reilly and Munakata 2000). If
the Rp− item fails to reactivate some of the previously shared fea-
tures, then this “set point” property will result in other features
(not shared with the Rp+ item) joining the representation, and
the network will strengthen the connections between the full
set of activated features. In so doing, the previously degraded re-
presentation recovers its initial integrity (insofar as it now has a
full complement of tightly integrated features), which should
boost recall. The process of swapping out shared for unshared
features results in an overall reduction of overlap between the
representations of the Rp+ and Rp− items. This neural differenti-
ation leads to reduced competition between these items and a
further improvement in recall on the final test (above and beyond
what is gained from strengthening the Rp− memory), thereby
accounting for the finding of revRIF.

In the present study, we set out to test this account by relating
a measure of neural differentiation (after interleaved retrieval
practice and restudy) to individual differences in the expression
of revRIF. If revRIF is driven by neural differentiation, then greater
levels of differentiation should be associated with greater levels
of revRIF. To this end,we leveraged amulti-voxel pattern analysis
technique that allowed us to compare how neural similarity
structure changed as a consequence of our behavioral manipula-
tion (Kriegeskorte et al. 2008). A priori, we expected that the
hippocampus might play a key role in this process, given its
noted involvement in learning novel episodic associations (see,
e.g., McClelland et al. 1995). Thus, we focus our analyses on hip-
pocampal activity obtained using an fMRI sequence optimized to
recover signal from the medial temporal lobe.

Materials and Methods
Participants

Thirty-five right-handed, fluent English speakers recruited from
the Princeton University community participated in the main
neuroimaging experiment. Following a protocol approved by
Princeton University’s Institutional Review Board, these partici-
pants were compensated at a rate of $20/h. Of these individuals,
2 participants were excluded from analysis due to excessive head
motion and another 2 participants were excluded on account of
their chance performance on the baseline parity task (see Gen-
eral Procedure). Additionally, 7 of the first 20 participants were
excluded because they admitted, on a post-experiment question-
naire, to violating the instructions by covertly “quizzing them-
selves” during periods when they were supposed to be studying
the image–name pairs (without attempting retrieval). The high
incidenceof this behavior ledus toadjust the instructions to further
underscore the importance of only attempting retrieval during
designated intervals (see General Procedure). The 15 participants
who received the elaborated instructions all reported that they
were able to successfully follow the instructions. As such, data
from these 15 participantswere pooled togetherwith the 9 usable

participants from the first batch of 20, leaving a final sample of
24 participants, ranging in age from 18 to 30 years (mean = 20.83;
SD = 2.73; 16 female).

An additional 18 individuals (age range: 19–30 years [mean =
21.56; SD = 3.03]; 9 female; 1 left handed) were recruited to partici-
pate in a behavioral control study following the same general
protocol, described later. They were compensated at a rate of
$12/h.

Materials

Eight pictorial exemplars from each of 6 different mammalian
categories (apes, elephants, giraffes, lions, otters, and pigs) were
sourced from the Internet, totaling 48 images (see Fig. 2). We
selected exemplars that would be visually confusable (within-
category) to the untrained eye but varied across multiple dimen-
sions (e.g., facial expressions and markings). After digitally
removing the original background, cropping, and scaling the
images to fill as much of the 500 × 500 pixel white canvas as
possible, the grayscale images underwent further preprocessing
to control low-level image properties using the SHINE toolbox
(Willenbockel et al. 2010). Specifically, we sought to equate the lu-
minance histograms across the images. Image-specific scrambled
background fills were generated by retaining each image’s origin-
al power spectrum but adding a random phase.

Retrieval status of the 6 categories was counterbalanced
across participants, such that for any 1 participant, 3 categories
would be subject to competitive retrieval practice (Rp) and
3 would not (Nrp). There were 6 levels of this counterbalancing
factor. Within each of the 3 Rp categories, 4 exemplars were
randomly assigned to the Rp+ condition and the other 4 to the
Rp− condition. An analogous randomization process was per-
formed on the items in the 3 Nrp categories, with items assigned
to either Nrpa or Nrpb conditions, though this particular distinc-
tion only became relevant at the analysis stage. Randomization
was conducted independently for each participant.

A matching number of low-frequency two-syllable names
were selected, with the additional constraint that the first letter
of each name corresponded to the first letter of the name of its
superordinate category (e.g., “Abner the Ape” and “Egan the Ele-
phant”). Nameswere randomly pairedwith category-appropriate
images for each participant.

General Procedure

The experiment began by informing participants that theywould
be introduced to various “animal characters,” such as Hartley the
Horse (a filler item). Participants were then familiarized with the
entire set of proper names that would appear in the experiment.
To this end, a Matlab script, utilizing Psychophysics Toolbox ex-
tensions (Brainard 1997), presented the printed form of the 48
names in isolation (e.g., “Abner”). Presentation of the proper
names occurred in a block-randomized order, such that every
block of 4 items contained a randomly selected representative
from each of the 4 conditions (Rp+, Rp−, Nrpa, and Nrpb). The or-
dering of the 4 conditions within any given block was also rando-
mized. Each printed name was presented centrally for 500 ms
before it was replaced with “???” for 750 ms. Participants were
instructed to say the just-presented name aloud when the ques-
tion marks appeared. This process was repeated, in a new block-
randomized order, so each name was practiced exactly twice.

A visual outline of the remaining parts of the experiment can
be found in Figure 3. MRI acquisition commenced with an initial
study phase (S1). In this phase, participants encountered the
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animal images for the first time, each paired with a name they
had practiced previously. For example, a participant might have
seen a picture of 1 of the 8 apes with the text, “Angus the Ape”
printed below it in white, against a black background. The pur-
pose of this phase was to record patterns of fMRI activity elicited
by the items, sowe could obtain an initial measurement (prior to
the retrieval-practice/restudy phase) of the similarity structure of
these patterns.

Each item was presented once during the S1 phase, in a ran-
domized order. Participants were encouraged to attend to and
study each image–name pairing when it appeared on the screen
for 2 s, as they would be tested for all the animals’ names at the
end of the scan session. Participantswere also asked to spend the
active 6-s inter-trial interval (ITI) entirely focused on completing
—as quickly and as accurately as possible—a series of parity judg-
ments. This task prompted participants to indicate whether the
sum of 2 centrally presented positive integers (1–9) was even or

odd by pressing a button with their right index finger or middle
finger, respectively. They had 1 s to respond, and then, regardless
of whether they responded, a fixation cross was presented for
100 ms, followed by a new addition problem. This cycle contin-
ued until the 6-s ITI elapsed, or therewas insufficient time to per-
form another parity judgment at its maximum allowable
duration, in which case the remainder of the ITI was filled with
fixation.

Four functional runs of retrieval practice/restudy followed the
initial study phase, with each of the learned image–name pairs
presented twice in every run. Four presentation schedules—1
for each run—were generated using OptSeq2 (Dale 1999), which
also determined the duration of the ITI ( jitter range: 1–7.5 s;
mean = 2.86; SD = 1.33 across runs). While all participants shared
the same 4 abstract schedules, their ordering (runs 1–4) and the
assignment of items to the condition placeholders within each
run was randomized for every participant. Items from a given

Figure 2. Stimuli. Our 6 animal categories, each containing 8 pictorial exemplars, were assigned to either the Rp (retrieval practice) or Nrp (baseline) condition in a

counterbalanced fashion across participants. Proper names beginning with the first letter of the relevant category were randomly assigned to the individual pictures,

which were also randomly divided into an A-set and a B-set. Image–name pairs randomly assigned to the A-set of Rp categories populated the Rp− condition, and the

other half of the items populated the Rp+ condition. Items in the Nrp categories were also randomly split between the Nrpa and Nrpb conditions.
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condition were all presented once before any would appear a
second time in any run.

The item’s condition dictated the ordering of the 2 constitu-
ent tasks to be performed in the retrieval-practice/restudy
phase (see Fig. 3). For Rp+ items, participants were asked first to
verbally retrieve the animal’s proper name, given the associated
image and a category cue. They had 2 s to do so andwere encour-
aged to guess if unsure of the correct response. Vocal responses
were recorded with an MR-safe noise-canceling microphone
and later coded for accuracy offline. The correct name then ap-
peared on the screen along with the corresponding visual
image for 2 s, during which time participants were asked to pas-
sively restudy the intact pairing. Because the correct answer only
appeared after a selective recall attempt in this condition, wewill
refer to this task as “Competitive recall.”

The order of the 2 componentswas simply reversedwhenever
an Rp− or Nrp item was presented: Participants received the cor-
rect answer immediately prior to having to repeat the name
aloud. We expected retrieval competition to be relatively low in
this condition, so we will refer to this task as “Non-Competitive

recall.”Notably, our stimuli and procedurewere designed tomin-
imize the degree of overlap across categories. If items fromdiffer-
ent categories compete with one another at retrieval, this would
make it more difficult to observe the predicted differences be-
tween Rp categories (which were subject to Competitive recall)
and Nrp categories (which were not).

During both Competitive and Non-Competitive recall at-
tempts, participants were asked to fixate on a central cross and
“clear their minds” during the variable ITI, rather than thinking
about any animals or their names. Moreover, the experimenter
emphasized that participants should not attempt to covertly re-
trieve the name when shown the correct answer. Instead, they
were instructed to passively review the presented information.
To further encourage compliance, the final 15 participants
received elaborated instructions to explain that any attempts
to “quiz themselves” during the restudy period would render
useless the intended contrast between retrieval and restudy
conditions. Their compliance with this special instruction was
assessed verbally in between scanner runs and post-experimen-
tally on a written questionnaire.

Figure 3. Behavioral paradigm. Initially, participants studied each one of the animal–name pairs in isolation once, with a parity judgment baseline task separating each

presentation. Participants were then given the opportunity to retrieve the name of each exemplar out loud (yellow prompt) and restudy the correct pairing (blue prompt)

twice in each of the following 4 rounds of interleaved retrieval practice and restudy. We manipulated the order of these 2 constituent tasks, such that Rp+ items were

subjected to Competitive retrieval practice attempts followed by feedback (i.e., the yellow preceded the blue prompt, as in the case of Abner). Items in the Rp− and

Nrpa/b conditions (e.g., Odin), in contrast, underwent retrieval practice only after first receiving the correct answer in blue, making the retrieval task relatively Non-

Competitive. A final opportunity to study all of the intact pairings once, without retrieval, was provided in the same manner as the initial study period, before the

final cued-recall test. Note that Rp− and Nrp items were seen the exact same number of times in exactly the same fashion; the only difference between the conditions

was that participants performed Competitive retrieval practice on other items from the Rp categories (but not from the Nrp categories).

Differentiation of Competing Memories Hulbert and Norman | 5

 by guest on A
ugust 16, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


At the end of the retrieval-practice/restudy phase, partici-
pants were given 1 last opportunity to study all of the intact
image–name pairings. The purpose of this final study phase
(S2) was to collect measurements of neural similarity that we
could compare with the measurements obtained during the
matched initial round of study (S1). During S2, participants
were reminded that they would receive a test on all the items at
the end of the scan session. However, they were instructed to
avoid overt (and covert) retrieval practice during this phase and
to focus exclusively on the single animal presented on the
screen. This phase paralleled that of the initial study period,
albeit with a freshly randomized presentation schedule.

In the final recall test, participants were presented with each
of the 48 images, along with a category cue, one at a time. They
were instructed to verbally recall the associated proper name as
quickly as possible. Participants were given 4 s to respond aloud
and encouraged to guess if unsure of the response. A 2-s ITI sepa-
rated each test trial. The order of the test trials was block-rando-
mized, such that every 4 test trials contained 1 representative
from each of the 4 conditions. No scanning occurred during this
phase.

Control Experiment

In addition to the imaging study, we conducted a behavioral con-
trol experiment (N = 18). The goal of the control experiment was
to assess whether we would get RIF (instead of revRIF) if we re-
moved opportunities for restudy of Rp− andNrp items, but other-
wise kept everything the same. The procedure of this control
experiment was identical to the imaging experiment, up until
the start of the retrieval-practice phase. At that point, partici-
pants in the control experiment practiced retrieving the Rp+
itemswith feedback (the number and structure of these Rp+ trials
exactly matched the Rp+ trials from the corresponding phase of
the imaging experiment, though the ITI was fixed at 2 s during
this period of the control experiment). However, unlike the im-
aging study, participants were not given the opportunity to re-
study or retrieve (even non-competitively) Rp− or Nrp items
during this phase. Immediately following the retrieval-practice
phase, participants were given the instructions for the final
cued-recall test, which they then completed.

fMRI Acquisition and Preprocessing

Data were acquired on a 3T Siemens Skyra scanner with a
16-channel phased array head coil. Data from the 6 functional
runs were acquired using a T2*-weighted gradient-echo echo-
planar imaging sequence composed of 30 interleaved slices
oriented parallel to the long axis of the hippocampus (TR = 2000
ms; TE = 30 ms; flip angle = 71°; FoV read = 256 mm; FoV phase =
90.6%; base resolution = 128; voxel size = 2 × 2 × 3mm; acceleration
= 2 ×GRAPPA). As the sequence (based onLaRocque et al. 2013)was
designed to optimize signal recovery from the medial temporal
lobe, coverage of the dorsal parietal and frontal lobes, as well as
portions of the ventral occipital lobes, was sometimes sacrificed
(see Supplementary Fig. 1 for a coveragemap). The first 5 recorded
brain volumes (and 3 hidden dummyvolumes) of each functional
run were ignored to allow for T1 stabilization. We acquired a
coplanar T1-weighted FLASH sequence at the end of each scan
session to assist in functional coregistration with the high-
resolution 3D T1-weighted MPRAGE image collected prior to the
functional runs (176 sagittal slices; TR = 2530 ms; TI = 1100 ms;
TE = 3.3 ms; flip angle = 7°; FoV = 256 mm; voxel size = 1 mm

isotropic; acceleration = 2 × GRAPPA). Field-mapping scans were
also acquired after the final recall test.

Preprocessing of the functional data was conducted via FEAT
version 5.98 in FSL version 4.1.9 (www.fmrib.ox.ac.uk/fsl). Each
run was subjected to the following preprocessing steps: motion
correction using MCFLIRT; field map-based EPI unwarping
using PRELUDE+FUGUE; slice-timing correction using Fourier-
space time-series phase-shifting; non-brain removal using BET;
grand-mean intensity normalization of the entire 4D data set
by a single multiplicative factor; and high-pass temporal filtering
with a 64s-sigma Gaussian kernel.

Imaging data from the initial study and final restudy periods
were not smoothed, in order to retain the highest possible spatial
resolution for themulti-voxel pattern analyses that would follow
(Zeineh et al. 2003; Carr et al. 2010).

FLIRTwas used to carry out registration of the functional runs
to the FLASH, MPRAGE, and standard brain (MNI152 with 2-mm
isotropic voxels). The pattern similarity analyses of primary
interest were conducted on hippocampal ROIs defined in native
space and realigned to the first volume of the initial study phase.

Hippocampal ROIs were defined anatomically via FreeSurfer’s
(http://surfer.nmr.mgh.harvard.edu) automated segmentation of
each participant’s high-resolution structural image (for details,
see Fischl et al. 2004). Individual left and right hippocampal
masks were extracted from the output. The binary masks were
then registered to functional space using FLIRT. We created a bi-
lateral ROI by merging the left and right hippocampal masks for
each participant.

Analysis of Neural Pattern Similarity

For each of our hippocampal ROIs, we constructed similarity ma-
trices, representing the extent to which the spatial pattern of
BOLD activity associated with the presentation of each item cor-
related with the patterns associated with other items from the
same category. By looking at the average similarity separately
for Rp and Nrp categories across time, we aimed to quantify
how differences between these 2 conditions related to behavioral
performance on the final recall test.

Figure 4 illustrates our analysis procedure. Each participant’s
preprocessed data were z-scored on a voxel-wise basis, separate-
ly for the initial study and final restudy runs. CustomMatlab rou-
tines calling functions from the Simitar toolbox (Pereira and
Botvinick 2013)were used to label and group volumes by the cate-
gory (type of animal) and condition (Rp−, Rp+, Nrpa, or Nrpb) of
the associated stimulus at each time point. To account for the
hemodynamic lag and reduce noise, we averaged across the se-
cond, third, and fourth brain volumes acquired after the onset
of the image–name displays. We next computed the Pearson cor-
relation between the patterns of BOLD activity associated with
items within each category. For our primary analysis, Rp−
items were compared with Rp+ of the same animal category,
just as Nrpa items were compared with Nrpb items from the
same animal category. The dummy coding in the case of
Nrp served to match the number of items within each of the
4 conditions, which would later be compared. As shown in
Figure 1, our theory specifically predicts that Rp− items should
be repelled away from Rp+ items. Computing within-category
similarity based on the neural distance between Rp− and Rp+
items was assumed to maximize our sensitivity to this effect
(see “Subsidiary analyses” section below for additional variants
of this analysis).

After Fisher z-transforming the correlation coefficients, we
computed the average similarity for the Rp and Nrp categories.
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In order to determine whether there was more differentiation
within our Rp condition than our Nrp condition, we computed
a “neural learning score” defined as a double difference of the
relevant similarity scores obtained for the initial study (S1) and
final restudy (S2) runs:

ðNrp2 �Nrp1Þ � ðRp2 � Rp1Þ

Thus, for each participant, we arrived at a score for which
positive values indicated greater differentiation within Rp cat-
egories relative to Nrp categories. Critically, we then tested for a
relationship between individual differences in the neural learn-
ing score and behavioral revRIF, hypothesizing that greater differ-
entiation would predict more revRIF. While we had a strong, a
priori prediction about the direction of this effect, we report the
results of two-tailed tests throughout.

Subsidiary Analyses

In addition to predicting that the change in Rp+ to Rp− pattern
similarity (relative to baseline) should correlate with revRIF, our
model also predicts that initial and final similarity should relate

to revRIF. High levels of initial similarity (during S1) should lead
to higher levels of competition during retrieval that, in turn,
should yield greater differentiation and revRIF. The predicted re-
lationship between final similarity (during S2) and revRIF goes in
the opposite direction: Lower levels of pattern similarity for Rp
items (vs. Nrp items) during S2 should be associated with less
interference on the final recall test, resulting in better recall of
Rp− items on the final test and more revRIF.

These ancillary effects may be harder to detect than the rela-
tionship between the change in pattern similarity (from S1 to S2)
and revRIF. Consider that some participants may show a higher
level of neural similarity than others for reasons unrelated to
learning (e.g., they might have a more stable BOLD signal). Com-
puting the change insimilarityacross the2 timepointshelps to can-
cel out nuisance factors of this sort, provided they affect S1 and S2
equally. In contrast, when analyzing S1 or S2 on their own, we do
not benefit from this noise cancelation. For this reason, we focused
on the more powerful test afforded by the neural learning score
(which looks at the change betweenS1 andS2) in ourmain analysis,
though we also report findings from S1 and S2 individually.

Our model also predicts some degree of differentiation be-
tween items within each of the 2 Rp conditions (i.e., between

Figure 4. Derivation of the neural learning score. For simplicity, in this diagram, we only consider 1 animal category per Nrp/Rp condition, each with 4 exemplars (the

outline colors indicate the sub-condition within that category, with pink representing Rp− and Nrpa items and green representing Rp+ and Nrpb items). For our

primary analyses, we computed similarity matrices separately for items within each Rp category (Rp− to Rp+ similarity) and Nrp category (Nrpa to Nrpb similarity)

based on data collected during the initial study period (S1). The within-category item similarity was expected to be comparable, on average, across categories prior to

our behavioral intervention. Thus, items from S1 are represented as being equidistant from each other in the within-category similarity structures. In the figure,

differentiation is shown as reduced similarity for items in the Rp category during the S2 phase, relative to the level of similarity that was present during S1. Our

“neural learning score” summarizes these effects using a single number that reflects the change in similarity (from S1 to S2) for Rp items, relative to Nrp items.

Because the values entering into the score are similarity (rather than distance) measures, we interpreted larger, positive scores as reflecting greater differentiation of

the Rp items compared with Nrp items over time. Of primary interest was the relationship, across participants, between the magnitude of the neural learning score

and the size of the revRIF effect, measured on the final recall test.
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Rp− items and other Rp− items; and between Rp+ items and
other Rp+ items). In the case of Rp− items, we might expect
some incidental differentiation as a byproduct of those items
being repelled from their Rp+ counterparts. As Rp− items are
pushed away from Rp+ items, they should also—on average—
be (indirectly) pushed away from each other. That is, the Rp
items should start out tightly clustered in representational
space, and the Rp− items should be forced outward as they are re-
pelled from the Rp+ items. If they are forced outward in different
directions, the distance between them should increase. However,
because this effect is indirect (andwe cannot guarantee that they
will always be forced outward in different directions), we expect
that this will be much less reliable than the Rp+ to Rp− differen-
tiation effect, and thus less predictive of behavioral revRIF.

In the case of Rp+ items, we would expect differentiation to
the degree that these items competewith other Rp+ items during
retrieval practice; considered on its own, this differentiation
should boost memory for Rp+ items, leading to a correlation be-
tween Rp+ differentiation (measured relative to an Nrp baseline)
and Rp+ recall on the final test. Having said this, differentiation
effects for Rp+ items could be offset by processes that increase
Rp+ to Rp+ similarity (e.g., if there are parts of the hippocampus
that trackmemory strength, Rp+ itemsmay increasingly come to
engage these regions, boosting similarity between Rp+ items; we
talk about this possibility in the “Univariate confounds” section
of the discussion). Competitive retrieval practice may also boost
recall of Rp+ items through strengthening, even if no differenti-
ation takes place. To the extent that differentiation is not the
only determinant of Rp+ recall, this will make it more difficult
to observe the predicted relationship between differentiation
and Rp+ facilitation.

These concerns (about the reliability of the Rp− to Rp− simi-
larity and Rp+ to Rp+ similarity as predictors of behavior) led us
to focus on analyses relating Rp+ to Rp− similarity to behavior
—as noted earlier, this is where our model makes its strongest
predictions. However, for completeness, we also report results
of analyses relating Rp− to Rp− similarity and Rp+ to Rp+ similar-
ity to recall behavior.

To assess whether multivariate methods were needed to de-
tect a relationship between changes in hippocampal activity and
revRIF, we conducted a univariate version of our primary ana-
lysis. For this analysis, we computed the difference in univariate
hippocampal activation elicited by Rp+ and Rp− items, and we
measured how this difference changed from S1 to S2 (relative to
baseline). Specifically, we extracted the univariate contrast of
parameter estimates from a spatially smoothed (using a 5-mm
FWHM Gaussian kernel) version of the data obtained during S1
and S2 for Rp+ versus Rp− items, and for Nrpa versus Nrpb

items. This enabled us to look at changes in the Rp+ to Rp− con-
trast from S1 to S2, relative to changes in the corresponding Nrpa

to Nrpb contrast from S1 to S2.
Lastly, we also conducted an exploratory whole-brain search-

light analysis, designed to identify extra-hippocampal regions
thatmight also exhibit a positive relationship between the neural
learning score and behavioral revRIF. This analysis proceeded in
manner analogous to the ROI approach described earlier, except
that, rather than a single ROI, the neural learning scorewas com-
puted for a roving 3 × 3 × 3 voxel ROI (or smaller, in the case of
searchlights on the edge of the brain mask) and assigned to
each searchlight’s centroid (Kriegeskorte et al. 2008). For these
purposes, the subject-level results of the exploratory whole-
brain searchlight were warped into standard space using FLIRT
with further refinements made by FNIRT nonlinear registration,

in order to facilitate group-level statistical analyses. To assess
the statistical significance of the relationship between these
(per-searchlight, per-subject) neural learning scores and revRIF,
we ran a regression analysis using FSL’s Randomise (version
2.9). In this analysis, the strength of the observed across-subjects
relationship (at a particular brain location) between neural learn-
ing scores and revRIF was compared with an empirical null distri-
bution, whichwas generated by randomly permuting participants’
neural learning scores with respect to their revRIF scores 5000
times. A voxel-wise threshold of P < 0.0001, uncorrected for mul-
tiple comparisons, was adopted for this exploratory regression
analysis.

Results
Behavioral Results

Neuroimaging Participants
Separate ANOVAs were conducted on retrieval-practice success
(measured during the retrieval-practice/restudy phase) and on
final recall accuracy. As expected, given the trivial nature of
the Non-Competitive retrieval-practice task that was used for
Rp− and Nrp items, retrieval-practice success for Rp− and Nrp
items was at ceiling (mean across conditions and runs, 0.99).
Therefore, we focused on retrieval-practice success for the Rp+
items, which involved Competitive retrieval from long-term
memory. The data presented in the left-hand panel of Figure 5 re-
veal a significant linear increase in Rp+ retrieval-practice success
(F(1,23) = 101.99, P < 0.001) as participants gained more experience
retrieving the targets from the first to the fourth run of retrieval
practice/restudy.

Final cued-recall accuracy for the proper names of animals
that were subjected to Competitive retrieval practice (Rp+ mean
= 0.65; SD = 0.22) was higher than that for baseline items (Nrp
mean = 0.47; SD = 0.26; F(1,23) = 13.87, P = 0.001). This facilitation
is a common feature of the RIF literature (see Anderson 2003 for
a review). We also observed a marginal trend toward reverse RIF:
improved recall of Rp− items relative to Nrp items (Rp− mean =
0.57; SD = 0.22; F(1,23) = 4.25, P = 0.05). See the right-hand panel of
Figure 5 for a graphical representation of these results, which
show the same qualitative pattern as Storm et al.’s (2008) results,
despite numerous differences in the materials and procedures.
Failures to recall the correct name can be divided into occasions
on which the participant did not recall anything and those on
which participants provided an erroneous name (commission er-
rors). To quantify the relative incidence of these events, we di-
vided the number of commission errors by the total number of
test trials marked as incorrect. Overall, our sample of 24 partici-
pants had an average ratio of 0.72 (SD = 0.21) across conditions,
indicating a high incidence of guessing/competition on trials
that posed a challenge for them.

We used the difference between each participant’s final Rp−
recall accuracy and his or her final Nrp recall accuracy—dubbed
reverse RIF or revRIF because positive values indicate better recall
of Rp− items than Nrp items—as our dependent measure in the
individual differences analyses described below.

Control Participants
The behavioral control experiment was intended to establish
whether our materials and general paradigm were sufficient to
yield RIF when interwoven restudy episodes—our key manipula-
tion—were excised. Indeed, the final test results from this control
experiment showed significant RIF: Recall for the Rp− items

8 | Cerebral Cortex

 by guest on A
ugust 16, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


(mean recall = 0.01, SD = 0.02) was impaired compared with recall
of baseline (Nrp) items (mean recall = 0.06, SD = 0.05), F(1,17) =
14.64, P = 0.001. Of our 18 participants, only a single one showed
an above-baseline (revRIF) effect (8%). Unsurprisingly, Rp+ recall
was high across participants (mean = 0.74, SD = 0.21) on account
of the 8 study/feedback cycles throughout the retrieval-prac-
tice phase.

fMRI Results

In an attempt to quantify and track the overlap between com-
petitors across runs, we computed the change in similarity
between hippocampal activity patterns associated with exem-
plars from each of our 6 categories. Averaged across participants,
the neural learning score was not significantly different from
0 in the left hippocampus (mean, −0.01; SD, 0.16; t(23) = −0.31,
P = 0.76), the right hippocampus (mean, −0.01; SD, 0.20; t(23) =
−0.27, P = 0.79), or the bilateral hippocampal ROI (mean, −0.01;
SD, 0.18; t(23) = −0.32, P = 0.75). This finding indicates that, at the
group level, the change in similarity of hippocampal BOLD pat-
terns (within category) was comparable across the Rp and Nrp
categories. However, this approach does not account for the
vast individual differences observed in the data. Critically,
we predicted that individual differences on our measure of
behavioral differentiation (revRIF) should correlate with the
degree of neural differentiation that took place between the

initial study and restudy periods (as measured by our neural
learning score).

A correlation analysis (all two-tailed tests) revealed a sig-
nificant relationship in the expected (positive) direction between
revRIF and the neural learning score extracted from the left hippo-
campus (r(22) = 0.43, P = 0.03). The same relationship wasmarginal
in the bilateral hippocampal ROI (r(22) = 0.34, P = 0.10), and it was
not reliable in the right hippocampus (r(22) = 0.26, P = 0.22). See
Figure 6 for the associated scatterplots.

A positive neural learning score, as previously defined, could
arise froman increase in pattern similaritywithinNrp categories,
a decrease in pattern similarity within Rp categories, or some
combination of the 2. However, our theory holds that revRIF
should depend on the degree to which items from Rp categories
differentiate. To examine this prediction further, we separated out
the measured change in similarity for Nrp and Rp categories and
tested to see whether either was significantly correlated with re-
vRIF. For these analyses, we subtracted the final restudy period’s
neural similarity scores from those of the initial studyperiod; posi-
tive scores on this measure indicate greater differentiation.

As expected, there was a significant positive relationship
between changes in neural similarity within Rp categories
(i.e., between Rp+ and Rp− items) and revRIF; no significant
relationship emerged between changes in neural similarity with-
in Nrp categories (i.e., between Nrpa and Nrpb items) and revRIF.
Importantly, these correlations (for Rp items andNrp items)were

Figure 5.Behavioral results. The left panel depicts Competitive retrieval-practice success for Rp+ items across the 4 intervening rounds between the initial study phase and

the final restudy opportunity. While participants initially struggled to name the Rp+ animals in the Competitive retrieval condition, they managed to do so with greater

success on subsequent retrieval practice attempts. The right panel depicts the final recall accuracy for all 3 conditions. Competitive retrieval practice facilitated Rp+ items

above the Nrp baseline. Therewas amarginally significant trend for the Rp− competitors to be facilitated above the Nrp baseline, as well, indicating numeric revRIF across

participants. Error bars represent SE of the mean across participants. *P < 0.05, †P = 0.05.

Figure 6. Individual differences analysis linking brain and behavior. We found a significant positive correlation between our neural learning score derived from a left

hippocampal ROI (in red) and the degree to which the Rp− items were facilitated above baseline on the final test. A similar trend was found when considering a

bilateral hippocampal ROI (in blue). The right hippocampal ROI (yellow) showed a far less reliable trend in the same direction. *P < 0.05, ∼P = 0.10.
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significantly different according to Meng’s z-test (Meng et al.
1992). This pattern of findings held both for similarity scores
extracted from the left hippocampal ROI (rRp(22) = 0.58, P = 0.003;
rNrp(22) =−0.09, P = 0.68; Meng’s z(23) = 2.20, P = 0.01) and from the
bilateral hippocampal ROI (rRp(22) = 0.49, P = 0.02; rNrp(22) = −0.11,
P = 0.63; Meng’s z(23) = 2.22, P = 0.01). See Figure 7 for the asso-
ciated scatterplots. Numerically, the data from the right hippo-
campal ROI followed the same pattern (rRp(22) = 0.31, P = 0.14;
rNrp(22) = −0.11, P = 0.61; Meng’s z(23) = 1.51, P = 0.07). However, we
focused our subsequent analyses on the 2 hippocampal ROIs (left
and bilateral) that reliably exhibited the basic pattern of results.

The strongest predictions of our model pertained to changes
in Rp− to Rp+ similarity (relative to baseline). Our neural learning
scorewas designed to capture this type of differentiation. As pre-
viously noted, we also might expect some indirect (and, thereby,
weaker) differentiation of Rp− items fromother Rp− itemswithin
a given category. In our study, the degree to which Rp− items dif-
ferentiated from each other (relative to baseline) did not reliably
predict behavioral revRIF in the left (r(22) = 0.09, P = 0.69) or bilat-
eral hippocampal ROIs (r(22) = 0.03, P = 0.91). To the extent that
Rp+ items competed with each other, they toomight be expected
to differentiate, leading to improved recall of Rp+ items (relative
to baseline). Yet, as we mentioned in “Materials and methods,”
there are several countervailing factors that could potentially
work against this effect. As such, we did not have strong predic-
tions as to the relationship between Rp+ differentiation and final
Rp+ recall. In our study, we found a nonsignificant trendwhereby
greater similarity—as opposed to differentiation—of Rp+ items
(relative to baseline) predicted better recall performance for Rp+
items (relative to baseline) in the left hippocampal ROI (r(22) =
−0.33, P = 0.12). The same trend was significant in the bilateral
hippocampal ROI (r(22) =−0.46, P = 0.02).

As noted earlier, focusing on a single time point reduces our
ability to subtract out nuisance factors unrelated to learning.

Nevertheless, our model predicts that initial and final similarity
states should also relate to final recallability. An attempt was
made to test these ancillary predictions with the available data.
As predicted, greater similarity between Rp− and Rp+ itemsmea-
sured during initial study (S1) corresponded to greater revRIF in
both the left hippocampal ROI (r(22) = 0.68, P < 0.001) and the bilat-
eral hippocampal ROI (r(22) = 0.57, P = 0.004). In contrast, the
analogous analysis involving Nrpa and Nrpb items failed to ex-
hibit a reliable relationship in either the left hippocampal ROI
(r(22) = 0.12, P = 0.56) or the bilateral ROI (r(22) = 0.08, P = 0.72). The
relationship between initial similarity and revRIFwas significant-
ly larger for Rp categories thanNrp categories in both the left hip-
pocampal ROI (Meng’s z(23) = 2.39, P = 0.008) and the bilateral ROI
(Meng’s z(23) = 2.04, P = 0.02). This latter set of findings accords
with our computational model, which predicts that higher levels
of initial similarity would lead to higher levels of competition
during Competitive retrieval that, in turn, would drive greater dif-
ferentiation and revRIF within the Rp condition.

While our analyses relating initial (S1) similarity to revRIF
came out as predicted, our analyses relating final (S2) similarity
to revRIF did not: We failed to observe any reliable correlation be-
tween similarity measured in the left hippocampal ROI during S2
and revRIF, in the Rp condition (r(22) = −0.22, P = 0.31), in the Nrp
condition (r(22) = 0.04, P = 0.86), or the subtraction of the 2 (r(22) =
0.15, P = 0.50). A comparable pattern was observed within the bi-
lateral hippocampal ROI: in the Rp condition (r(22) = −0.23, P =
0.28), in the Nrp condition (r(22) = 0.04, P = 0.86), or the subtraction
of the 2 (r(22) = 0.14, P = 0.51).

We also tried a univariate version of our neural learning score
analysis: Instead of computing how themultivariate distance be-
tween Rp+ and Rp− items changed from S1 to S2 (relative to base-
line), we computed the difference in univariate hippocampal
activation elicited by Rp+ and Rp− items, and we measured
how this difference changed from S1 to S2 (relative to baseline).

Figure 7.Within-condition differentiation and revRIF. By examining the relationships between revRIF and the constituent parts of the neural learning score derived from

the left hippocampal ROI (top row, red) and the bilateral hippocampal ROI (bottom row, blue), we observed reliable correlations between revRIF and the neural

differentiation of Rp categories, but not for Nrp categories. *P < 0.05, **P < 0.01.
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Overall, we observed no evidence of a significantmain effect (i.e.,
differential change in the Rp+ to Rp− contrast, relative to theNrpa

to Nrpb contrast) in either the left hippocampal ROI (mean, −1.42;
SD, 93.36; t(23) = −0.07, P = 0.94) or the bilateral ROI (mean, −1.82;
SD, 100.81; t(23) = −0.09, P = 0.93). Moreover, we failed to observe
any reliable relationship between individual differences in this
univariate measure and revRIF, considering either the left hippo-
campal ROI (r(22) =−0.05, P = 0.82) or the bilateral ROI (r(22) =−0.03,
P = 0.88). This (null) result shows that—at least in this case—
multivariate analysis was needed in order to observe a relation-
ship between changes in hippocampal activity and revRIF.

Although we had a priori reasons to focus on the hippocam-
pus and adjusted our imaging parameters to match, we also
asked whether any other regions of the brain exhibited a reliable
positive or negative relationship between revRIF and the neural
learning score. To do so, we swept a 27-voxel searchlight across
the entire brain volume. No searchlight centroids survived statis-
tical thresholding at P < 0.0001 (uncorrected for multiple compar-
isons). It, of course, remains possible that other searchlight sizes/
shapes would have identified hotspots.

Discussion
In this study, we followed up on a puzzling result from Storm
et al. (2008), who reported that interleaved retrieval practice
and restudy can lead to reverse RIF: improved recall of competing
(Rp−) items relative to baseline (Nrp) items. Based on prior
neural network simulations (Norman et al. 2006), we hypothe-
sized that reverse RIF after interleaved retrieval practice and
restudy was due to differentiation of competing representations.
In support of this hypothesis, we found that—across participants
—the degree of neural differentiation associatedwith Rp categor-
ies (relative to Nrp categories) in the left hippocampus predicted
revRIF. Importantly, our behavioral control experiment showed
that participants exhibit significant RIF when they were not
given interleaved opportunities to restudy the Rp− and Nrp
items.

Storm et al. (2008) accounted for accelerated relearning after
RIF by appealing to Bjork and Bjork’s (1992) “New Theory of
Disuse,” which holds that the long-term storage strength of a
memory benefits from restudy attempts as a decreasing function
of its current accessibility (called retrieval strength). According to
this theory, retrieval practice reduces the retrieval strength of
Rp− items. When Rp− items are restudied, they gain dispropor-
tionately in storage strength, owing to their diminished retrieval
strength. Under some circumstances, this change in storage
strength can outweigh the reduction in retrieval strength, result-
ing in a net increase in recall of Rp− items on the final test.

Crucially, theories that focus on memory strength generally
fail to formalize another important dimension of memory: the
representational overlap between competitors. Facilitation and
inhibition may provide an adequate means of resolving re-
trieval-based competition in the short-term when targets and
competitors remain fixed. However, different circumstances
may call for the retrieval of both the previously inhibited and
facilitated memories. Differentiation addresses this problem:
Distinguishing the neural representations of the (previously)
competing items ensures that all of items can be accessed in
the future.

Factors Affecting the Neural Learning Score

Participants in this study varied extensively in the degree to
which they showed neural differentiation (as indexed by the

neural learning score) and behavioral revRIF. As predicted
by our computational model, these neural and behavioral mea-
sures were correlated across participants (see Fig. 6). In addition
to the correlation between the neural learning score and revRIF,
there are 2 other features of Figure 6 scatterplot that stand out:
1) the high level of variability in neural learning scores across par-
ticipants and 2) the lack of an overall trend toward differentiation
—roughly equal numbers of participants showed negative versus
positive neural learning scores. Here, we discuss possible factors
that may have affected the neural learning score, leading to the
observed pattern of results.

One possible source of individual differences is variance in
how distinctively participants encoded the animal stimuli at
the outset of the experiment. As discussed earlier, higher levels
of initial similarity in the neural representations of these animals
were associated with higher levels of revRIF on the final test.

Variability in participants’ use of covert retrieval also may
have contributed to individual differences in revRIF. Specifically,
some participants may have consciously or unconsciously
adopted a strategy of covertly retrieving Nrp items (e.g., by disre-
garding the provided correct answer and quizzing themselves
during what are supposed to be Non-Competitive trials). Adopt-
ing such a strategy would have the effect of blurring the differ-
ence between the Nrp and Rp conditions, thereby reducing the
neural learning score and the behavioral revRIF effect, which
both rely on relative differences between the 2 conditions. Previ-
ous research indicates that RIF may be masked by covert
attempts to retrieve putatively unpracticed items or categories
(for a related discussion, seeWeller et al. 2012). Indeed, such cov-
ert retrieval attempts—and their complicating influence on final
recall—may be especially likely when retrieval practice is inter-
mixed with restudy periods (Dobler and Bäuml 2013). As dis-
cussed in the “Methods” section, we excluded participants who
admitted (on a post-test questionnaire) to deliberately quizzing
themselves on Non-Competitive retrieval trials (see the “Strat-
egy-based exclusions” section for further consideration of these
participants). However, the remaining (non-excluded) partic-
ipants may have unintentionally engaged in this strategy to
varying degrees.

Importantly, while the aforementioned factors (variance in
initial distinctiveness, covert retrieval) can explain variability in
the neural learning score, they are not sufficient to explain why
the distribution of neural learning scores was centered around
0. Taken at face value, this latter observation suggests that
the differentiation process predicted by ourmodelmay not be oc-
curring. However, another possibility is that strategic changes
from S1 to S2 may have caused a net negative shift in the neural
learning score that worked against the differentiation effect.
For example, encoding variability may decrease as a function of
participants’ experience with stimuli from a particular category.
During S1, participants may have been overwhelmed by the task
of memorizing 48 animal–name pairings. Their attentional
focusmay have shifted rapidly between features of the presented
animal and its given name, as they struggled to identify a
useful strategy for the task. By S2, many participants may have
settled on a more stable attentional strategy, yielding less noisy
(and thus more similar) neural patterns across animals. Further-
more, we would expect this decrease in encoding variability to
be larger for Rp categories, insofar as participants are forced to
engage more deeply with Rp items (due to Rp+ Competitive re-
trieval practice) than Nrp items during the retrieval-practice
phase. In summary, this encoding variability account posits a
shift from relatively noisy/dissimilar patterns during S1 to less
noisy/more similar patterns during S2, that is larger for Rp than
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Nrp categories; because of the way that the neural learning score
is computed, this shift would end up exerting a negative push on
neural learning scores that works against the predicted differen-
tiation effect.

Ruling Out Alternative Explanations

As noted earlier, our preferred account of the data is that revRIF
is a consequence of neural differentiation. Here, we will address
alternatives to this view.

The Role of Integration
Differentiation is one way to reduce interference; another way to
reduce interference is to integrate the items (Anderson and
McCulloch 1999). Through a series of instructionalmanipulations
and reanalyses based on self-report data, Anderson and
McCulloch (1999) found that attempts to integrate Rp+ and Rp−
items reduced (though did not reverse) RIF. While integration
could (in principle) have occurred in our study, we have numer-
ous lines of evidence suggesting that integration was not a
significant factor in driving the present findings. First, we expli-
citly instructed our participants not to engage in this behavior.
Second, our own survey data revealed that only 6 participants in-
dicated occasionally bringingmultiple exemplars tomind for the
purpose of comparison. Importantly, even in these cases, their
stated intention was to highlight features that distinguished
the exemplars, rather than to integrate over commonalities.
Third, even if we were to take the extremely conservative app-
roach and exclude these participants, the correlation between
revRIF and the neural learning score remained significant within
the left hippocampal ROI (r(16) = 0.53, P = 0.03) and marginal
within the bilateral hippocampal ROI (r(16) = 0.42, P = 0.08). Most
importantly, the hypothesis that integration is responsible for
revRIF implies that there should be a positive relationship
between neural similarity and revRIF (i.e., themore you integrate,
the more neural similarity will increase for Rp items, and the
more revRIF there should be), but we obtained the exact opposite
pattern in our study—we found that decreased (not increased)
neural similarity between Rp+ and Rp− items predicted revRIF.
For all of the above-mentioned reasons, we argue that it is highly
unlikely that integration gave rise to our basic brain–behavior
correlation. Lastly, note that we did observe a positive relation-
ship between the change in Rp+ to Rp+ item similarity and
final recall of Rp+ items (relative to baseline). The directionality
of this effect is consistent with the idea that participants are
integrating Rp+ items during the retrieval-practice phase (lead-
ing to increased neural similarity and increased subsequent re-
call). However, for the reasons outlined earlier, we think that
the effect may be due to other factors besides integration (e.g.,
the “Rp+ bump” hypothesis mentioned in the following section).

Univariate Confounds
Throughout the paper, we have interpreted positive values of the
neural learning score as reflecting differentiation of multivariate
patterns of activity in the hippocampus. However, the learning
score could, in principle, be affected by univariate changes in
neural activity. For example, consider what would happen if re-
trieval practice increased (or decreased) activity in a subset of
hippocampal voxels for all Rp+ items. We will refer to this as
the “Rp+ bump” hypothesis. Such an occurrence would reduce
the neural similarity between Rp+ and Rp− items, insofar as the
Rp+ patterns would contain the “bump” and the Rp− patterns
would not. Consequently, it would show up as an increase in
our neural learning score.

To distinguish between these 2 accounts ofwhat is driving the
neural learning score (differentiation or an Rp+ bump), we can
look at the similarity between Rp+ items and how this relates
to the neural learning score. If the neural learning score is driven
by an Rp+ bump, then high values of the learning score should
be accompanied by increased similarity between same-category
Rp+ items (insofar as all of these Rp+ items will contain the
bump). In contrast, if the neural learning score is driven by
differentiation, then high values of the learning score should be
accompanied by reduced similarity between same-category Rp+
items (when an Rp+ item is practiced, other Rp+ items from that
category may act as competitors, resulting in differentiation).

An examination of changes in Rp+ to Rp+ similaritywithin the
left hippocampal ROI yielded no evidence for the Rp+ bump hy-
pothesis. There was a numerical trend for the learning score to
be negatively correlated with same-category Rp+ to Rp+ similar-
ity (r(22) =−0.12, P = 0.59). As noted earlier, this pattern is consist-
ent with the differentiation hypothesis and directly contradicts
the Rp+ bump hypothesis. For the sake of completeness, we
also examined the complementary relationship between (base-
line corrected) changes in Rp− to Rp− similarity and the neural
learning score (i.e., an “Rp− bump”). No reliable effect was ob-
served within the left hippocampal ROI (r(22) =−0.09, P = 0.68).

Lastly, in addition to the correlational analyses presented
here, there is 1 additional reason to discount the Rp+ bump hy-
pothesis: Namely, it does not provide a mechanism for the ob-
served correlation between revRIF and the neural learning
score. If differentiation is driving the neural learning score, it is
clear why—in terms of our theory—this would affect revRIF: Re-
duced overlap leads to reduced competition, which then leads to
improved recall of Rp− items. In contrast, if an Rp+ bump were
driving the neural learning score, it is unclear why this would af-
fect revRIF, which is defined entirely based on the relationship
between Rp− and Nrp items (i.e., it is unclear why a bump in ac-
tivation for Rp+ items would make recall of Rp− items better,
relative to Nrp items).

While current evidence suggests that the Rp+ bump is clearly
not driving the neural learning score (or revRIF), this does not
mean that an Rp+ bump does not exist. For instance, our finding
that increased Rp+ to Rp+ similarity predicts an Rp+ recall benefit
could be explained in terms of just such an Rp+ bump. That is,
higher levels of memory strength could be reflected in a bump
in hippocampal voxels that trackmemory strength (leading to in-
creased Rp+ to Rp+ similarity) and also higher levels of Rp+ recall.

Process-of-Elimination Strategies
Another possible account of revRIF is that it reflects strategies at
test, rather than representational differentiation. For example, if
participants adopted a strategy of ruling out familiar (Rp+) ani-
mal names when confronted with a less familiar (Rp−) memory
cues, this could artificially boost our measure of Rp− recall, rela-
tive to baseline. However, we have reason to believe that this type
of strategy was not likely to have given rise to our results. To the
extent that participants’ familiarity with Rp+ itemswas driving a
process-of-elimination strategy, leading to revRIF, the same re-
vRIF effect should be present in the control study, but it was
not—participants instead showed a robust RIF effect.

Strategy-Based Exclusions

A total of 7 participants were excluded on the basis of their self-
reported failure to follow instructions and not quiz themselves
during study episodes. As they represent a sizeable proportion
of our overall sample, we examined how their strategy choice

12 | Cerebral Cortex

 by guest on A
ugust 16, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


may have influenced the results. In an attempt to characterize
the behavior of the 7 exclusions in general terms, we first noted
that the mean Nrp recall from these 7 exclusions (0.73, SD = 0.21)
was higher than that for the 24 compliant participants (0.47, SD
= 0.26). A similar pattern emerged for the Rp− condition within
the excluded group (mean = 0.64, SD = 0.15) relative to our compli-
ant participants (mean = 0.57, SD = 0.22). These increases in Nrp
and Rp− recall are consistent with the suggestion that the ex-
cluded participants may have engaged in covert Competitive re-
trieval practice of the Nrp and Rp− items. As is apparent from the
pattern of means listed earlier, the 7 excluded participants did
not show revRIF—rather, they showed a numerical trend toward
RIF. Including these 7 participants in our main analysis wea-
kened the relationship between the neural learning score and re-
vRIF without changing the direction of the effect within the left
hippocampal ROI (r(29) = 0.23, P = 0.21), the bilateral hippocampal
ROI (r(29) = 0.20, P = 0.29), or the right hippocampal ROI (r(29) = 0.16,
P = 0.39). The weakened results make sense in light of a separate
descriptive analysis focusing only on the 7 excluded participants,
which revealed negative brain–behavior correlation coefficients
within our hippocampal ROIs (left: −0.86; bilateral: −0.90; right:
−0.75). The coefficients are in the opposite direction of the re-
ported relationship within our compliant group. Together,
these results suggest that participants’ strategies interacted
strongly with (rev)RIF in this paradigm. Moreover, the fact that
participants’ self-reports (of strategy use) alignedwith behavioral
and neural evidence suggests that participants had some sub-
jective insight into these strategies.

The above-mentioned results suggest away to further explore
the idea (mentioned earlier, in the “Factors affecting the neural
learning score” section) that covert retrieval practice may have
contributed to the low neural learning scores shown by some of
the included participants. If this is the case, then included parti-
cipants with low neural learning scores should show the same
behavioral “signature” of covert retrieval practice that was
shown by excluded participants (most diagnostically: enhanced
recall for Nrp items). To investigate this, we did a median split
on the neural learning scores (from the left hippocampus)
among the 24 included subjects and compared the “high neural
learning score” participants and “low neural learning score” par-
ticipants on Nrp recall. We found that mean final Nrp recall for
“low neural learning score” participants (0.56, SD = 0.26) was nu-
merically better than that for “high neural learning score” parti-
cipants (0.39, SD = 0.25) and numerically worse than that for the
excluded participants (0.73, SD = 0.21). While this comparison is
post hoc and based on small numbers of participants, the numer-
ic ordering of these results fits with the idea that participants
with low neural learning scores may have engaged in covert re-
trieval practice (albeit not to the same degree as excluded
participants).

Related Neural Findings

The results of our study are consistent with recent results from
Schapiro et al. (2012). Like our study, theymeasured pattern simi-
larity before and after learning. Unlike our study, they used a stat-
istical learning paradigm in which participants viewed a long
sequence of fractal images. The fractal stream was composed
of strong pairs, for which the second image in the pair followed
the first image 100% of the time, mixed in with weak pairs, for
which the second image in the pair followed the first image
33% of the time.

In the Schapiro et al. (2012) study, weak associates played a
role analogous to Rp− items in our study. On trials in which the

second item in a weak pair did not follow the first, we hypothe-
size that participants generated a prediction of the second item
(leading to weak activation of that item’s representation), at the
same time that the sensory representation of the first item was
strongly active. This combination of weak activity (for the second
item) and strong activity (for the first item) is analogous to the
combination of weak activity for the Rp− item and strong activity
for the Rp+ item depicted in Figure 1b. As shown in Figure 1c, we
would expect this to result in shared features being disconnected
from the second item. The next time that the second item is pre-
sented in the sequence, wewould expect this to result in the frac-
tal’s representation acquiring new features, thereby resulting in
differentiation (see Fig. 1d,e). In keeping with this prediction,
Schapiro et al. (2012) found that the hippocampal representations
of items in weak pairs differentiated from one another. Although
there have been other studies that have related hippocampal pat-
tern similarity to memory (e.g., LaRocque et al. 2013), most of
these studies have not compared pre- and post-learning pattern
similarity. To our knowledge, the Schapiro et al. (2012) study is
the only other study (besides ours) that has looked at differenti-
ation of hippocampal representations as a function of learning.

Relationship between Differentiation and Pattern
Separation

The differentiation process described in this paper should not be
confused with the widely discussed notion of hippocampal pat-
tern separation (see Yassa and Stark 2011 for a review). Pattern
separation refers to the ability of the hippocampus to assign dis-
tinct representations to stimuli, regardless of their similarity
(Marr 1971). This pattern separation bias, which results from
sparse coding in the dentate gyrus and CA3, occurs automatically
for all input patterns (O’Reilly and McClelland 1994; O’Reilly and
Rudy 2001). Another key point is that pattern separation reduces
overlap between neural representations, but there is still some
residual overlap in the representations that are assigned to simi-
lar stimuli (Norman and O’Reilly 2003). This residual overlap is
important for coding efficiency—if the hippocampus assigned
completely non-overlapping representations to stimuli, it
would quickly run out of neurons. As discussed by Norman and
O’Reilly (2003), residual overlap in the hippocampus can lead to
interference between memories, both at encoding (if new mem-
ories partially overwrite older ones) and at recall (if overlapping
memories co-activate and compete with each other).

The differentiation process described in this paper operates
on the residual levels of hippocampal overlap that are “left
over” after (automatic) pattern separation processes take place.
That is, differentiation is not automatic; rather, it is driven by
competition at retrieval (resulting from overlap in representa-
tions), and it acts to reduce this competition (by further reducing
representational overlap). The idea of adaptive differentiation
has a longstanding history in the connectionist modeling litera-
ture: In these models, when similar stimuli are linked to distinct
responses and are presented in an interleaved fashion, this can
trigger learning processes that act to pull apart the internal repre-
sentations of these stimuli, thereby supporting the network’s
ability to generate appropriately distinct responses to these stim-
uli (e.g., Gluck and Myers 1993; McClelland et al. 1995). O’Reilly
and Rudy (2001) ascribed this adaptive differentiation process
specifically to cortex, as opposed to hippocampus. A key claim
here is that adaptive differentiation canhappen in thehippocam-
pus proper in addition to surrounding cortical regions (for a re-
cent model of how adaptive, error-correcting learning can take
place in the hippocampus, see Ketz et al. 2013; see also Gluck
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and Myers 1993). We should also note that the differentiation
process does not have to be complete in order to yield improve-
ments in recall. Figure 1 (for expository convenience) shows a
complete elimination of overlap between previously competing
memories; however, our model and the brain data from differen-
tiators in this study both show a more modest reduction in over-
lap, which we hypothesize causes a moderate reduction in
competition, thereby leading to a moderate increase in recall
accuracy.

One final issue relates to the representation of similarities be-
tween category members: If (automatic) hippocampal pattern
separation reduces overlap between representations of same-
category items, and (competition-driven) differentiation reduces
hippocampal overlap even further, how does the brain still man-
age to represent all of the features that same-category items have
in common with one another? A central claim of the Comple-
mentary Learning Systems (CLS) model (McClelland et al. 1995)
is that cortex, not hippocampus, is responsible for representing
this kind of semantic similarity structure. Whereas the hippo-
campus is biased to assign relatively distinct representations to
stimuli, cortex is biased to assign overlapping, feature-based re-
presentations, such that stimuli with similar features are as-
signed similar internal representations. According to the CLS
model, low overlap in the hippocampus explains how people
can retrieve distinct names for similar-looking pictures, and
high overlap in cortex explains how—at the same time—people
can still recognize similarities between same-category items.
As noted earlier, the CLS model also posits that differentiation-
like processes occur in cortex (see O’Reilly and Rudy 2001), but
cortical differentiation is hypothesized to occur on a different,
more incremental, timescale. Moreover, it is done with the goal
of refining rather than eliminating the cortical representation of
similarity structure. The fMRI protocol that we used in the pre-
sent study was optimized to study hippocampus, so we were
not able to fully assess the degree to which differentiation also
took place in cortical regions.

Relationship to Other Accounts of Differentiation

The differentiation account presented here also differs from the
account of memory differentiation presented by Shiffrin et al.
(1990; see also Shiffrin and Steyvers 1997; Criss et al. 2013).
Shiffrin et al. (1990) argued that—when a memory is strength-
ened—the representation of which features that memory does
(and does not) contain becomes sharper, thereby making it less
confusable with other memories. Applied to our study, this idea
implies that strengthening Rp+ items via retrieval practice will
make the representations of Rp+ items more distinct from all
other items, thereby reducing competition and boosting recall
of Rp− items. A key difference between Shiffrin et al.’s (1990)
view of differentiation and ours is that—according to Shiffrin
et al.—retrieval practice of Rp+ items can itself cause differenti-
ation and, thus, revRIF. In contrast, our theory predicts that
retrieval practice of Rp+ items, on its own, will harm memory
for Rp− items and that interleaving retrieval practice of Rp+
items and extra study of Rp− items is needed in order to obtain
differentiation and revRIF. While not definitive, results from
Storm et al. (2008)—showing RIF after retrieval practice and re-
vRIF only after interleaved learning of Rp+ and Rp− items—are
more consistent with our view than the Shiffrin et al. (1990)
view. The Storm et al. (2008) results suggest that the Shiffrin
et al. (1990) hypothesis may be insufficient to account for extant
data on RIF and revRIF on its own.

Future Directions

Subsequent investigationsmay further clarify our understanding
of the neural learning score by probing the differentiation of indi-
vidual items from their initial state, rather than relying on
averages across entire categories. The results may speak to
even more specific predictions arising from our neural network
model. For instance, it may be possible to identify the neural sig-
nature of features Rp− items cede to Rp+ items, as well as any
new features assumed by the former’s representation. Additional
research is also needed to investigate the relationship between
the neural learning score and revRIF in extra-hippocampal re-
gions. Our choice of MRI sequence optimized was guided by an
a priori hypothesis based on evidence of the hippocampus’s im-
portance in episodicmemory formation. This entailed sacrificing
coverage of other areas, including somewith known associations
to the representation of animals, such as the lateral occipital
complex (e.g., Weber et al. 2009).

Our findings may also shed light on previous results showing
that periods involving sleep reduce RIF (MacLeod and Macrae
2001; Chan 2009; Baran et al. 2010; but see Racsmány et al. 2010;
Abel and Bäuml 2012). Previously, we have argued that sleep pre-
sents an opportunity for interleaved replay of competingmemor-
ies (Norman et al. 2005). More recently, we have argued that
interleaved replay during sleep promotes differentiation, result-
ing in reduced competition and more accurate recall of individu-
ating features (Schapiro et al. 2013). In future work, we will
explore whether effects of sleep on RIF depend on the same pro-
cesses that we manufactured during the waking state in this
study (i.e., differentiation, caused by interleaved learning).

Conclusions
In summary, we found that neural differentiation of competing
memories (as measured using fMRI pattern similarity analysis)
was associated with improved recall of these memories. These
resultswere in linewith predictions derived fromour prior neural
network modeling work (Norman et al. 2006, 2007). The work
highlights the contribution of differentiation—in combination
with inhibition and facilitation—to reducing competition be-
tween memories. Without differentiation, memory would be a
zero-sum process whereby strengthening onememory necessar-
ily impairs recall of other, related memories. Differentiation
provides a way out of this zero-sum trap: Our results provide ini-
tial evidence that neural differentiation can resolve competition
in a way that enhances the accessibility of both practiced and
unpracticed items.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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